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FOREWORD

This report has been prepared to expedite early domestic dissemination

of the information generated under the contract. The data and conclusions

must be considered preliminary and subject to change as further progress is

made on this program. This is a progress report covering the work done

during the first 12 months of the contract; it is not a final report.

The NASA Program Manager is Dr. C.C. Chamis.

ABSTRACT

Accomplishments are described for the first year effort of a 5-year pro-

gram to develop a methodology for coupled structural/thermal/electromagnetic

analysis/tailoring of graded composite structures. These accomplishments

include: (I) the results of the selective literature survey; (2) 8-, 16-, and

20-noded isoparametric plate and shell elements; (3) large deformation struc-

tural analysis; (4) Eigenanalysis; (5) anisotropic heat transfer analysis; and

(6) anisotropic electromagnetic analysis.
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1.0 INTRODUCTION

This technical program is the work of the Engineering Mechanics and Life

Management Section of the Aircraft Engine Business Group (AEBG) of the General

Electric Company in response to NASA RFP 3-537260, "Coupled Structural/

Thermal/Electromagnetic (CSTEM) Analysis/Tailoring of Graded Composite Struc-

tures." The overall objective of this program is to develop and verify analy-

sis and tailoring capability for graded composite engine structures taking

into account the coupling constraints imposed by mechanical, thermal, acous-

tic, and electromagnetic loadings.

The first problem that will be attacked is the development of plate and

shell finite elements capable of accurately simulating the structural/thermal/

electromagnetic response of graded composite engine structures. Because of

the wide diversity of engine structures and the magnitudes of the imposed

loadings, the analysis of these is very difficult and demanding when they are

composed of isotropic, homogeneous materials. The added complexity of direc-

tional properties which can vary significantly through the thickness of the

structure will challenge the state-of-the-art in finite element analysis. We

are applying AEBG's 25 years of experience in developing and using structural

analysis codes and the exceptional expertise of our University consultants

toward the successful conclusion of this problem. To assist _,_ this, we are

drawing heavily on previously funded NASA programs.

We are drawing on NASA programs NAS3-23698, 3D Inelastic Analysis Methods

For Hot Section Components, and NAS3-23687, Component Specific Modeling, in

our development work on the plate and shell elements. In addition to these

two programs, we will draw on NAS3-22767, Engine Structures Modeling Software

System (ESMOSS), and NAS3-23272, Burner Liner Thermal/Structural Load Model-

ing, in Task III when we generate a total CSTEM Analysis System around these

finite elements. This will guarantee that we are using t_e latest computer

software technology and will produce an economical, flexible, easy to use

system.

In our development of a CSTEM tailoring system, we will build on NASA

Program NAS3-22525, Structural Tailoring of Engine Blades (STAEBL) and AEBG

program, Automatic Improvement of Design (AID), in addition to the program

system philosophy of ESMOSS. Because of the large number of significant

parameters and design constraints, this tailoring system will be invaluable

in promoting the use of graded composite structures.

All during this program, we will avail ourselves of the experience and

advice of our Low Observables Technology group. This will be particularly

true in the Task V proof-of-concept. Their input will be used to assure the

relevancy of the total program.

Figure 1 shows our program and major contributions in flowchart form.

This gives a visual presentation to the synergism that will exist between

this program and other activities.
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Figure 2 depicts an integrated analysis of composite structures currently

under development in the composite users' community. The severe limitations

of such a system are not highlighted because three major steps in the process

are not shown. Figure 3 adds these steps. The analysis system really begins

with a definition of geometry. A user then defines a finite element model

simulating this geometry and the anticipated loading. The process then moves

to defined Step 3. One cycle through the process ends with the prediction of

individual ply average stresses and strains. Now comes a significant produc-

tivity drain, namely, manual intervention to evaluate these stresses and

strains against strength and durability limits. Based on this, the user must

decide to (I) change the finite element model, (2) change the composite lami-

nate, (3) both of the above, or (4) stop here.

Obviously, there is a considerable cost savings to be obtained by select-

ing Number 4. The CSTEM system will obviate the reasons for selecting Number

4. This system, shown in Figure 4, begins with the definition of geometry, as

before, but then proceeds to a definition of master regions Which contain all

of the necessary information about geometry, loading, and material properties.

Step 3 is a constitutive model which develops the necessary structurai, ther-

mal, and electromagnetic properties based on a micromechanics approach. Fur-

thermore, this constitutive model will contain the logic to generate the

global finite element model based on the variation of the properties, as

depicted in Figure 5. Using a nonlinear incremental technique, these global

models will be solved for their structural, thermal, and electromagnetic

response. Based on this response the global characteristics will be evalu-

ated, with convergence criteria and decisions made on remodeling. Once the

global characteristics meet the accuracy requirements, the local characteris-

tics are interrogated and decisions made on remodeling because of strength,

durability, or hereditary effects. Once this cycle has been c+abilized, opti-

mization will be performed based on design constraint. Our goal in Task II is

to develop finite elements whose characteristics make this system possible.

Although the structural properties have been highlighted, the thermal and

electromagnetic properties have as much or more variation, and less work has

been done in these areas.

I. 1 EXECUTIVE SUMMARY

Meetings were held with designers and management of the Low Observables

Sections to determine their requirements. It was learned that the generic

problem was that structures designed for optimum electromagnetic capabilities

often have nonoptimum thermal and structural capabilities. There is a need

for a tool that can accurately and efficiently analyze and iterate among

these three fields so that viable compromise designs can be generated. At

present, no such tool exists.

Based on the Statement of Work and the results of the literature survey,

we have established the 8-, 16-, and 20-noded isoparametric finite elements

to be used to develop the CSTEM plate and shell element capabilities. These

three elements meet the requirements for the plate elements. They have

quadrilateral planform and are reducible to triangular planform, have nodes

on the upper and lower surfaces, will meet accuracy requirements, and have
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the proper degrees of freedom to perform all three types of analyses. The

16- and 20-noded elements meet all of the requirements for the shell elements,

including double curvature.

Having established the basic building block, progress has been made in

the three major areas, that is, structural, thermal, and electromagnetic,

while maintaining the maximum commonality in computer software, such as shape

functions, Jacobians, et cetera.

Progress has occurred in the structural analysis area, as follows:

Defined the nonlinear equilibrium system of equations, including

large deformation effects. Established an incremental, updated

Lagranian solution.

Defined the overall programming architecture.

Wrote the modular stiffness matrix subroutines.

Wrote the modular mass matrix subroutines.

Wrote the subroutines for modular load.

Wrote subroutines for modular assembly and boundary conditions.

Established the input data format and wrote input subroutines.

Wrote the modular eigenvalue/eigenvector routines.

Incorporated the linear constraint equations.

Wrote a stress smoothing subroutine.

Wrote a modular equation solver.

Studied the micromechanics approach to stiffness formulation for

composite elements.

Ran the verification and validation cases for the elasticity and

eigenanalysis capabilities.

The file structure and data flow are currently under development.

In the thermal area, the following progress has been made:

Anisotropic heat transfer equations have been defined for both

linear and nonlinear conductivities and for steady-state and

transient problems.

All of the subroutines necessary to perform a linear, steady-state,

anisotropic heat transfer problem have been written, making maximum

use of the code that is common with the structural analysis.

In the electromagnetic area, the following progress has been made.

• Results of the literature survey have been studied.



Dr. M.V.K. Chari, General Electric's expert on finite element elec-

trical analysis, has been contacted.

Finite element equations for the electromagnetic field problem have

been established.



2.0 TECHNICAL PROGRESS

2.1 TASK I - SELECTIVE LITERATURE SURVEY

The first activity on this program was to perform'a selective literature

search using our internal General Electric data bases, the external COMPENDEX

data base, and the literature supplied by the Texas A&M consultants. The

pertinent articles turned up by this search are enumerated in Appendix A.

Based on the results of this survey, it was proposed to the NASA Program

Manager that the family of 8-, 16-, and 20-noded isoparametric elements be

used for all three aspects of this program: structural, thermal, and electro-

magnetic.

The proposed plan of attack was:

Work on three parallel efforts - structural, heat transfer, and

electromagnetic

Use an incremental updated Lagrangian approach for the large dis-

placement structural problem.

• Handle the coupling among the fields by an iterative procedure.

2.2 TASK II - GRADED MATERIAL FINITE ELEMENTS

2.2.1 Task IIA - Plate Elements

The 8-, 16-, and 20-noded isoparametrics will be used as plate elements

and shell elements. As plate elements, there will be a restriction that the

midsurfaces be in a plane. This restriction will be the only difference

between the plate and shell elements and, primarily, affects the program

input. A simpler geometric and loading input can be used. Beyond this, all

of the technical requirements are the same as for the shell elements. These

will be discussed in the next section.

2.2.2 Task liB - Shell Elements

AEBG has developed and used many different plate and shell elements.

The elements to be used in this program are the 8-, 16-, and 20-noded iso-

parametric elements. These have been used both as plates and as doubly curved

shells for both linear and nonlinear material behavior. A review of these

elements follows.

Isoparametric Solid Elements

The isoparametric solid elements permit the modeling of any general

three-dimensional (3D) object, since the elements represent a discretization

IO



of the object into finite elements which are 3D continuous representations.
The basic term "isoparametric" meansthat the elements utilize the same inter-
polating functions (also called "shape functions") to interpolate geometry,
displacements, strains, and temperatures. It is, therefore, important that

the user be aware that not just any displacement, geometry, and temperature

field to be analyzed is necessarily compatible with a given element mesh.

This is particularly true where high temperature or strain gradients occur.

The following sections discuss the basic element formulation assumptions.

Shape functions are used to describe the variation of some function G

within an element in terms of the nodal point values.

n

G(x,y,z) = _ HiGi(xi,Yi,Z i)

i=l

whe re

G(x,y,z) = the value of the function (such as displacement, tempera-

ture) at any point with coordinates (x,y,z) within an

element

G (xi,Yi,z i) = the value of the function at node point i

H.

1
= the element "shape function" associated with node i

n = the number of nodes describing intraelement variation.

In order to ensure monotonic convergence to the correct results, shape

functions must satisfy several requirements. Satisfaction of these require-

ments results in convergence from an upper bound. These displacement function

requirements are:

They must include all possible rigid body displacements

They must be able to represent constant strain states

They must be differentiable within elements and compatible between

adjacent elements.

While the above conditions prove valuable for establishing upper bounds

for solutions, they are not essential. Incompatible displacement modes are

widely and successfully used. Their principal disadvantage is that stiffness

may no longer be bounded from above.

Curvilinear coordinates are introduced into the isoparametric concept to

overcome the difficulty of formulating shape functions in global Cartesian

coordinates. Also, generality in element geometry definition is obtained by

this process.

ii



A local curvilinear coordinate system (r,s,t), which ranges from -1 to

I within each element, is_introduced in which shape functions are formulated.

Also, a mapping from curvilinear to global coordinates is defined. A typical

two dimensional element is shown in Figure 6.

The same polynomial terms used in the Cartesian coordinates are used but

with the curvilinear coordinates r,s,t replacing x, y, and z to generate

shape functions. The r, s, and t coordinates are the same for all global

element configurations.

Typical finite element equilibrium equations:

I. Structural

[M]{_i} + [C]{dl} + [Z]{u i} = {FB} + {F s} + {F I} + {F C} + {FNL}

[M] = SvP[H]T[H]dv "Consistent" mass matrix

[C] = Damping matrix

[K] = Iv[B]T[D][B]dv Stiffness matrix

{FB} = /v[H]T{fB}dV Body forces

{Fs} = $s[HS] T {fs}dS Surface tractions

{FI} = Iv[B]T[D]{¢T}dV Initial strains

{FNL } = Iv[B]T[D]{¢NL}dv Nonlinear strains

where

{ui}T = [uI v I w I u 2 v 2 w2 .... ]

{u}Z = [u v w]

{u} = [H]{ui}

{¢} = [B]{ui}

12
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{a} - [D]{¢ e) - [D] ({eTOT}-{gTHERM}-(eNL})

,

{fB} T = [fBx fBy fBz]

(fS} T = [fSx fSy fsz]

Thermal

[q]{Ti) + [K]{Ti} " {QB) + {Qs} + {Qc}

[q] = Yv c[H]T[H]dv Element heat capacity

[K] = Iv[B]T[R][B]dv + IS2S [HS]T[HS]dS2

Element conductivity

[QB] = Iv[H]T{qB}dV Element heat generation

[Qs ] " /Sl[lIS1]T{qs}dSl + IS a[HS]TTBdS2

Boundary heat flow

(Qc } = Concentrated heat flow

where

{Ti) T = iT1 T2 T3...]

{T) - [H] {T i}

{q} - [B]{T i}

C

TB

= Specific heat

ffiBoundary temperature

= Surface heat transfer coefficient

14



3. Electromagnetic

y[S]{A i} + _[D] (A i} + _[E]{A i} + J_._w[T]{A i} = [T]iJi}
0

where iS], [D], [E], and iT] are functions of [H].

{A i} = Nodal point values of potential

{Ji} = Nodal point values of forcing functions

= Reciprocal permeability

w = Frequency

o = Resistivity

Other field problems have similar finite element expressions.

8-Noded Solid

The 8-noded solid element utilizes a formal mapping technique with dis-

placement functions defined by a series of interpolating polynomials called

"shape functions." In this manner, an arbitrary solid of six faces can be

mapped from a parent coordinate system as shown in Figure 7. The numbering

sequence must be as shown in this figure, except the user may define the nodes

NI and N5 as any convenient nodes on the solid. Note that node N1 has the

parent coordinates (r,s,t) = (1,1,1). Once this has been established by the

user, all face definition given later in this section is established.

The shape functions for this element are as follows:

H 1 = (I + r) (1 + s) (I + t)/8

H2 = (I - r) (I + s) (I + t)/8

H3 = (I - r) (I - s) (I + t)/8

H4 = (I + r) (I - s) (I + t)/8

H5 = (I + r) (1 + s) (1 - t)/8

H6 = (I - r) (I + s) (I - t)/8

H7 = (i - r) (I - s) (I - t)/8

H8 = (I + r) (I - s) (I - t)18

Since this element has linear displacements on an edge, the ability to model

the deformation due to bending is not possible, and the element will be overly

stiff in bending. To overcome this, the addition of non-nodal degrees of

freedom can be used as an option. These are called "incompatible modes," and

are condensed out of the element stiffness after stiffness generation, leaving

24 degrees of freedom per element. The interpolation for all element proper-

ties and displacements is given by: 15
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U

i = 1

V _

i= 1

W _

8

Z_.,

i= 1

Hiwi+(i_r2)a,+_s2)as (1-t2)a9

where a. through a^ are the extra "generalized" degrees of freedom which are

condensed out. The user is given the option to include or not include the

incompatible modes. In general, they should be included only when bending

across an element is expected to be significant and only for elastic analyses.

Given the coordinate system (r,s,t) as previously established, we can

also now define the face numbering conventions and order of n_es on a face.

These definitions are needed to establish conventions for inputting pressure

loads on the element and number of faces when displaying surface stresses on

the faces. These conventions are summarized below:

Face No. Location Nodes and Node Order on Face

I r = +I N1 N4 N8 N5

2 s = +I N1 N5 N6 N2

3 t = +I N1 N2 N3 N4

4 r = -I N7 N3 N2 N6

5 s = -I N7 N8 N4 N3

6 t = =I N7 N6 N5 N8

This element has been formulated with variable temperature and general

orthotropic material properties. During numerical integration for stiffness

and equivalent nodal forces due to thermals, plasticity, and creep, the

material properties at each integration point are evaluated at the temperature

of that integration point. A Gauss integration scheme is used, and the user

may choose an integration order of 2, 3, or 4 points in each direction

(r,s,t).

17



16-Noded Solid

The 16-noded solid follows the same type of development for stiffness

and loads as the 8-noded solid and, like the 8-noded solid, it has three dis-

placement degrees of freedom per node, thus a total of 48 degrees of freedom

on the element. Since this element has higher order interpolating functions

in two directions on an edge, this element is sometimes called a "thick shell"

element, as it can be used with reasonable approximation in this type of

analysis where the shell thickness is in the t direction.

The node numbering sequence must be as shown in Figure 8, except that

the user can define the location of Nodes N 1 and N as desired. Note that

Node N I has the parent coordinates (r,s,t) = (I,I,_). Since this has been
establlshed, all face numbering is then defined.

Starting with the basic interpolating functions for the corners, we
define:

G1 = (I + r) (1 + s) (1 + t)/8

G3 = (I - r) (1 + s) (1 + t)/8

G5 = (I - r) (I - s) (I + t)18

G7 = (1 + r) (I - s) (I + t)/8

G9 = (I + ri(1 + s) (I - t)18

GI] = (] - r) (I + s) (I - t)18

G13 = (1 - r) (1 - s) (1 - t)18

GI5 = (1 + r) (1 - s) (I - t)/8

Then, for the midside nodes, the shape functions are:

H 2 = (I - r) (I + s) (1 + t)14

H 4 = (I - r) (I - s) (I + t)14

H6 = (1 - r) (1 - s) (1 + t)/4

H8 = (1 + r) (1 - s) (1 + t)/4

H10 = (1 - r) (1 + s) (I - t)/4

H!2 = (I - r) (I - s) (I - t)14

HI4 = (1 - r) (1 - s) (1 - t)14

H16 = (I + r) (1 - s) (1 - t)14

18
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and for the corner nodes, the modified shape functions are:

H 1 = G 1 - (H2 + H8)12

H 3 = G3 - (H2 + H4)12

H5 = G5 = (H4 + H6)/2

H7 = G7 - (H 6 + H8)/2

H9 = G9 - (HI0 + H16)/2

H11 = Gll (H10- + H12)/2

H13 = G13 - (H12 + H14)/2

H15 = G15 - (H14 + H16)12

As in the case of the 8-noded solid, the user may use an option to

specify that certain extra generalized degrees of freedom be added to intro-

duce "incompatible modes" for bending. If through-thickness bending in the t

direction is significant, these modes will prevent the element from being

overly stiff, These generalized degrees of freedom are condensed out after

stiffness formulation, leaving only the 48 nodal degrees of freedom. The

complete element interpolating functions, used to interpolate displacements,

etc., are thus:

--L-

[-

16 6

u = _ H.U. + _ _.a.
1 1 1 1

i= 1 i= 1

20

16 6

V = Z H.V. + Z H,b,
1 I 1 1

i= 1 i= 1



• 16 6

i i i i

i=l i=l

where the interpolating function coefficients for the generalized displace-

ments are:

HI = r (I - r 2) H2 = s (I - s 2) H3 = (I - t2)

H4 = rs (I - r 2) H5 = rs (i - s 2) R6 = (] - r2) (I - s 2)

and the variables a_ to a6, b I to b6, and c_ to c_ are the 18 generalized
displacements which I 1 bare condensed out after stiffness formulation.

Given the coordinate system (r,s,t) as previously established, we can

also now define the face numbering conventions and order of nodes on a face.

These definitions are needed to estab!ish conventions for inputting pressure

levels on the element and numbering of faces when displaying surface stresses

on the faces. These conventions are summarized below:

Face No. Location Nodes and Node Order on Face

1 r = +I N1 N8 N7 NI5 NI6 N_

2 s = +l N1 N9 NIO NIl N3 N2

3 t = +I NI3 N2 N3 N4 N5 N6

4 r = -I NI3 N4 N4 N3 Nil NI2

5 s = -I NI3 NI4 NI5 N7 N6 N5

6 t = -I NI3 NI2 NIl NIO N9 NI6

N7 N8

NI5 NI4

This element has been formulated with variable temperature general ortho-

tropic material properties. During numerical integration for stiffness and

equivalent nodal forces due to thermals, plasticity, and creep, the material

properties at each integration point are evaluated at the temperature of that

integration point. A Gauss integration scheme is used, and the user may

choose an integration order of 2, 3, or 4 points in each direction (r,s,t).
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_e_ty-Nod_ed lsop.ar_etric Finite Element

Figure 9 shows the representation and mapping of the 20-noded isopa_a-

metric finite element in the the global (physical space) x, y, z coordinate

system and the parent (barycentric) r, s, t, coordinate system. The trans-

formation maps any global element into the same parent element with coordinate

ranges of

-! <r<+l

-i <S<+1

-I <t<+l

Figure i0 shows the node numbering in the parent coordinate system. Table I

gives the coordinate of each node.

Let

(u, v, w) = Displacements of a point in the (x, y, z) directions

(ui, vi, wi) , i = I, 20 = Displacements of the nodes in the (x, y, z)
directions

{d} = [u, v, w] T

{di} = [ui, v i, wi]T

Then for any point within the domain of the element:

20

u =E Hi

i=l

u i = H i u i

20

v =E Hi v. = H. v.1 i i

i=l

2O

i=!
H. wi=H. w.

I

vl:
I

.wJ

H. 0 0
1

0 H. 0
I

0 0 H.
I

l •

U.
I

v i

W,
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Table I. Nodal Coordinates for
20-Nodal Element.

Node
Numb e r r__ s

1 1 -1

2 1 1

3 1 1

4 I -I

5 -I -I

6 -I 1

7 -I I

8 -1 -1

9 1 0

10 1 1

11 1 0

12 1 -1

13 -I 0

14 -1 1

15 -I 0

16 -1 -1

17 0 -1

18 0 1

19 0 1

20 0 -I

t

-I

-I

1

1

-I

-I

1

1

-I

0

1

0

-I

0

1

0

-I

-I

1

1
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where the H i in terms of the parent coordinate system are given as follows.
The basic corner noded shape functions are

G 1 = (1+r)(1-s)(1-t)/8

G2 = (l+r)(l+s)(l-t)/8

G3 = (l+r)(l+s)(l+t)/8

G4 = (l+r)(l-s)(l+t)/8

G5 = (l-r)(1-s)(1-t)/8

G6 = (l-r)(l+s)(1-t)/8

G7 = (1-r)(1+s)(z+t)/8

G8 = (1-r)(l-s)(1+t)/8

The midside node shape functions are

H 9 = (l+r)(l-s2)(l-t)/4

HI0 = (l+r)(1+s)(1-t2)/4

HI1 = (l+r)(1-s2)(1+t)/4

H12 = (l+r)(1-s)(1-t2)/4

HI3 = (l-r)(l-s2)(l-t)/4

HI4 = (l-r)(l+s)(l-t2)/4

H15 = (1-r)(l-s2)(l+t)/4

HI6 = (l-r)(l-s)(l-t2)/4

HI7 = (1-r2)(l-s)(l-t)/4

HI8 = (l-r2)(1+s)(1-t)/4

= (l-r2)(1+s)(1+t)/4
H19

H20 = (l-r2)(l-s)(1+t)/4

The modified corner node shape functions are

H I = G 1 - (H9+HI2+H17)/2

H 2 = G2 - (H9+H10+HI8)/2
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and

H3 = G3 - (HI0+HII+HI9)/2

H4 = G4 - (HII+HI2+H20)/2

H 5 = G5 - (HI3+HI6+HIT)/2

H6 = G6 - (H13+HI4÷H18)/2

H7 = G7 - (HI4+H15+HI9)/2

H8 = G8 - (HI5+H16+H20)/2

In a three-dimensional context_ the relations between the displacements

the strains are given by the following.

Six Strain-Displacement Relations

_U

xx _x

_V

yy Oy

_W
-- m6

zz _z

exy = _ Yxy = _ +

gyz =

ZX

Yy_.= _ _ +

I 1(aw au)

Therefore, the strain at any point within the elements domain is given

by the following.

27



E x

_y

gZ

YxY I =

I
I

I

¥yzl

8u
8x

8v
8y

8w
8z

8u 8v

8v _w

8w 8u

w

b

_H_i
8x

8H.
l

8y

0

8H.

8z

0

8H.
l

8x

8H.
i

8z

0

0

8H.
I

8z

8H.
i

8y

8H.

8x

U.

1

V°

1

I

wi

or

{_} = [Bi] {di}

g=B.d,
1 1

Since the Hi are defined in the parent coordinate system, we need to define

the derivatives with respect to the global coordinate system by the chain

rule of differentiation.

8H 8H. 8H.
8Hi i 8r I 8s I 8t

8x 8r 8x 8s 8x 8t 8x

0Hi 8Hi 8r 8H. 8HI 8s i 8t

8y Or 8y 8s 8y 8t 8y

8H i 8H. 8H. 8Hi 8r m 8s i 8t

8z 8r 8z 8s 8z 8t 8z

To produce the required terms for the above expressions we need to develop

the Jacobian matrix.
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S --

D

_x a_x az
8r 8r 8r

ax _ ___
8s 8s 8s

J --

j --

8H. 8H. 8H iI X

_-r xi 8_r Yi _ zi

8H. 8H. 8H.
l 1 l

F7"_._FJ'Yi FTzi

8H. 8H. 8H.
x X X

8H 1 _H 2 8H2.__.q

_r _r .... _r

8H 1 8H 2 8H20

8S 8S .... 8S

8H 1 8H 2 8H2__._O0

8t _t .... _t

m

x 1

x2

x20

Yl

Y2

Y20

z 1

z2

z20
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Inverting this Jacobian gives the following:

m

8r 8s 8t

8x 8x ax

j-1 8r 8s 8t

8y 8y 8y

8r 8s 8t

8z az 8z

This is equivalent to the following:

- 8z 8z 8z"

8t 8s 8r

j-l= 1 _ _ _ __.%
detJ 8t 8s 8r

8x 8x 8x

8t 8s 8r

This gives all the necessary terms for the B matrix and therefore the ability

to Compute strain at any point within the element domain.

e(x,y,z) = B(x,y,z)i d.
l

8H 1 8H 2 8H20

o o FT o o .... 2--i-o o

8H i 8H 2 8H20
e = 0 _ 0 0 _ 0 .... 0 _ 0

8y ay ay

aH._ aH._ aH2o
0 0 _ 0 0 _ .... 0 0

8z 8z 8z

u

x 1

Yl !

z I
I

x 2

Y2

z 2

i

x20

Y20

z20
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The volume of the element is given by the following integral:

V = detJ drdsdt

The various structural, thermal, and electromagnetic quantities will be deter-

mined by integrals over the volume, which takes the following form.

+1 +1 +1

-- D m

gij
detJ drdsdt

Or, letting Gij = gij detJ

Fij = _/ _ . Gij drdsdt

This is normally evaluated by numerical integration of some form.

m n o

a=l b=l c=l

sb tc) W a Wb W' C

where m x n x o sampling points are used and W , W., W are the weighting
a D c

factors for location r , s. , t . One of our major efforts is the investi-
a

gation of various numerica_ integration techniques with respect to the require-

ments of CSTEM. Table 2 gives the locations and weights for up to the fourth

order Glauss-Legendre Quadrature. Table 3 gives the information for up to

sixth order Newton-Cotes (even interval) quadrature.
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Table 2. Gauss-Legendre Quadrature.

Integration

Order mi _ x.r. _i-w-

I +I l_f3 +I

II -11_'3 +I

3 I 0 8/9

II +#-6"_6 5/9

III -#'6--.'6 5/9

V 31 + 4_.87 21 _-_36

i i - V 3 + 4_,.87 21 3_36

III

IV - V3 - 74_--._.8 21 + 3_36
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Table 3, Newton-Cotes Quadrature.

b n

f F(r)dr = (b-a) E cn F. + Ri i n

o i=0

No. of

Intervals

n
n n n n n n n

CO C I C2 C3 C4 C5 C6

1 I
u

2 2

2

3

i 4 !
_ 6

! _3 _3 !
8 8 8 8

4 7 32 12 32 __7
90 90 90 90 90

5 j_99 7__5 5__oo 5___o 7___5 ]__%9
288 288 288 288 288 288

6 41 21__6 27 272 27 216 4__I
840 840 840 840 840 840 840
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For the stiffness matrix:

Kij ./+I j,+1 /+IBiDB j detJ drdsdt
-1 -1 -1

where

Gij = BiDB j detJ

and D is the constitutive matrix

The body force is given by:

+I +i +1 T

FBI "/-1 I.l I_i Hi fB detJ drdsdt

where

Gi = HT fB detJ

and

[fB] T " [fBx FBy FBz]

The initial strain effect is given by:

Fo i =/+If+I/+1 BiDE o detJ drdsdt

-1 -I -I

where

r,i = BiD co detJ

and

[_o] T = [_x Cy Ez "_xy Yyz )ZX]
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The "consistent" mass matrix is given by:

Mij=_I_:_I_:£:IoHTHjdetjdrdsdt

Where

Gij = pHTHjdetJ

The thermal strain effect is given by:

+I

FTHi : LI

+I +I

_1 _1 BTDETHdetJdrds°t

Where

T
G i = BiD_THdetJ

And

T _y:T _ 0 0 0[ETH ] : [_x_T ^ z_T ]

The nonlinear strain effect is given by:

FNL i : i+I i+I i+I BT
-I -I -1 iENL detJdrsdt

Where

T

Gi : BiDENLdetJ

And

[_NL] : [ _NLX _NLY CNLZ YNLXY YNLYZ YNLZX]
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The surface traction effect is given by:

p+l e+l

H T . f dA
Fsri = j w sx s

-1 -I

Where the F . are the nodal forces due to surface tractions f on a surface
srl s

of constant r. Similar expressions apply for surfaces of constant s or t.

dA =

m

8x

8s

8s

8._z
8s

m

8._x
8t

x, _ dsdt =
' at

i

8t

m m

_z.
8s 8t 8s 8t

8z 8x 8x 8z

8s 8t 8s 8t

8s 8t 8s 8t

dsdt

dA = Cdsdt

Then

Gi = H T. f C
Sl s

36

Large Deflection Theory

Second order engineering strain-displacement equations

e = _ + + { +
X

Z ox I

e = _ + + 4

y _y 2 __y /

e

z :_+_ + -, +z_ \_/

_ _ _+ av av 8_ a_exy = 8y + 8x +l 8x 8y 8-_ 8y + 8x
k--.

- z -- __ 8w 8w
8_Zv 2#_ + 88u + + --eyz = 8z + 8y 8y

8w 8u 8u 8u 8v 8v 8w 8w
e =-- + -- .l ----+ ----+--

zx 8x 8z 8x 8z 8x 8z 8x
&=m



[e] = [ell + [e2]

eix I

e. I

zy

e.
IZ

eixy ]

eiyzl

eizx I

n u

8u

8x

8y

8w

8z

8v 8w

8w 8u

8u _v

1
[%] =

m

8u 8v 8w
0 0 0 0 0 0

8x 8x 8x

8u 8v 8x
0 0 0 0 0 0

8y 8y 8y

0 0 0 0 0 0
8u 8v 8w

8z 8w 8z

8u 8v 8w _u 8v 8W

o o o _-__-__ _y _y _y

8u 8v aw 8u 8v 8w
0 0 0

8z 8z 8z 8x 8x 8x

8u 8v 8w 8u 8v 8w
...... 0 0 0
8y 8y 8y 8x 8x 8x

m

8u

8v

8w

8__q
8y

a_Xv

8y

8__w

8y

a_.p.u
8z

I

._vj
8z

8.._w
8z

37



Let

38

d = au av aw
ax 8x

d = 8u av 8w
az az

[A]

X

= dl i
Y

dz_j

_T

IG I
I XI

OI

to-iT

_ _'r

101

d*l

"dl] T
V!

[o]T

[._]T
[o]T

[d_]T
[o]T

[o]T

[d_]T
[d_]T



Then,

[,z]; ]

But

[G] =

8H 1 8H 2
0 0

ax 8x
0 0

8H 1 8H 2
0 -- 0 0 -- 0

8x 8x

8H 1 8H 1
0 0 _ 0 0

8x 8x

8H 1 8H 2
0 0

8y 8y
0 0

8H 1 8H 2
0 -- 0 0 -- 0

8x 8y

aH 1 _H_.__2
0 0 _ 0 0

8y 8y

8H 1 8H 2
0 0

8z 8z
0 0

8H 1 8H 2
0 _ 0 0 _ 0

8z 8z

OH 1 OH2
0 0 _ 0 0 _ ,..

8z 8z

8H20

8x

8H20

8y

0

8H20

8z

0

0

0

8H20

8x

0

0

8H20

8y

0

0

8H20

8z

0

0

8H20

8x

0

0

8H20

8y

0

0

aH20

8z
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So_

,, r_d']= tAl ,, _t_l tdJ_- tA1t_J'_Cdl

The incremental stiffness is

[R] :[_,].[q: [§l T [D] [B] dV

v

[q :/[q_ Io,[q_v
v

The force unbalance is given by:

f(d) =
[§l Is] dr- [_] = o

V

Where

[F] are the applied forces

a [el = IB] _ ld]
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But

And

A L,_:.f,'.,:_.I"'tsldv+ f_j_ ,,tsldv
v

a [o] = [D] a[e] = [D] [§] a[d]

A [BI = A CB2]

Giving

A,,_: f_ [_]_,_v. ft_, + [m t_J_ [_,_v
v v

Defining

[_s]_t_,: f[%]+,s,dv
v

Gives

Then

For eigenvalue problems:

?_,]','=,oi+I,.,','

[_] ,,,:_,=f,o,'r,,,,,,,'r,s,_v
v
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But,

Then

[A] T IS] =

S 0 0
x

0 S 0
x

0 0 S
x

S 0 0
xy

0 S 0
xy

0 0 S
xy

S 0 0
XZ

0 S- 0
xz

0 0 S
xz

S 0 0 S 0
xy xz

0 S 0 0 S 0
xy xz

0

0 0 S 0 0 S
xy xz

S 0 0 S 0 0
y yz

0 S 0 0 S 0
y yz

0 0 S 0 0 S
y yz

S 0 0 S 0 0
yz z

0 S 0 0 S 0
yz z

0 0 S 0 0 S
yz z

m

d 1
x

A d 1
Y

d 1
z

[Ks]:/,oft ,M,Io,dv
V

One of the major application areas for these graded material finite

elements will involve small linear elastic strains but extremely large dis-

placements. The severity of this condition is compounded by the involvement

of temperature effects and body forces, conditions which have not been

42



extensively addressed. Additionally, eigenvalue/eigenvector analysis is

required in the loaded conditions. We intend to take advantage of the sig-

nificant improvements in computer speed and memory size in attacking this

problem area.

We are using an incremental-updated Lagrangian approach. The virtual

work equation for the updated Lagrangian formulation leads to the nonlinear

incremental displacements from time (t) to time (t + &t).

At [C ijklSAEklA_ij - i °lJ 6 2AEtkAekj

_AUk _AUk ] /V- __ dV = _W(t + At) - t(Yij_AeljdV

where

6W(t + At) =ft(Fi + _i)_AUidV

(i)

(2)

+Lt(Ti + _i)_&Ui ds

A_ij -_ \_x'-'-T+ _xi/

Cijkl6AEklAeijdV is equivalent to

-2fv t oij6AeikAekjdV is equivalent to

(3)

{_u k} (4)
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and

[KN1] { AUk } " (ft [BL] T [0"1] [BL] dV) l AUk}

At _lj6AUk'i'AUk'jdV is equivalent to

_J I__I(Lc__c__ _v)I_!

/Vt [BL]

where

t _ij6AgljdV is equivalent to

Ti_idv

(s)

(6)

(7)

(8)

IAolij" ["2] IA_"I
0

T
IAullj"[AUl,1AU1,2......%,3]

(9)

(i0)

_o._.[...._u__u;_u_...]_
The incremental equilibrium is

where

[El] is the linear stiffness matrix, i.e.

(ii)

(12)

[KL] ._vt[BL] T [C] [BL] dV (13)

[KN] iS the nonlinear stiffness matrlx due to larger deformation, i.e.

44
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[KNI] = /Vt [BL]T [(_I] [BL] dV

(15)

{API

" "_Vt [B2]T [O2] [B2] dV

is the incremental load from time (t) to (t + At) i.e.

- _(t+ At)-_ [BL]T 1o}dV
t

(16)

(17)

The stress matrices are given by

[a] o

[02]

m

0

o [7] o

_ o o [o]_

(18)

[_]

- Oll

= 012

_ 013

o12 o13 -

(19)

[oi]

-2o22

(Symmetric)

0

-2033

-_2

-o12

0

- _ 1+°22 - i°13

- _ 2+03

m

-_13

0

- 01 3

1

i
- -_.o12

- _- 33+Ol

(20)
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Eigenvalue/Eigenvector Analysis

We are developing the algorithms for solving the lowest eigenvalue and

eigenvector pairs for large structure system of equations; that is,

K_ i = A i M@ i

where

K is the maximum symmetric stiffness matrix

M is the maximum symmetric mass matrix

A. is the ith eigenvalue
i

_i is the ith eigenvector

The methodologies coded so far are the determinant search and subspace itera-

tion techniques.

Both of these techniques have been investigated extensively in a finite

element code that uses 8-noded shell elements and the COLSOL solution

scheme. The addition of the eigenvalue/eigenvector analysis capability is

closely linked to the solution procedure, and extensive changes to the COLSOL

routines were required. Both lumped mass and consistent mass matrices were

coded.

Determinant Search Method

In the determinant-search technique, a Sturm sequence check is very

useful for estimating the proper eigenshift. Once the proper eigenshift is

located in the neighborhood of the desired eigenvalue, a Rayleigh-quotient is

then employed to iterate the trial vector until convergence is reached. A

valid starting trial vector should be used, otherwise it may converge to the

wrong result even though the proper eigenvalue is obtained in the repeated

roots case. The logics for determining the proper eigenshift requires eigen

deflation, Gram-Schmidt orthogonality if necessary, and schemes of accelera-

tion, bisection, secant, or quadratic solutions. Appendix B shows the test

case results of this procedure.

Subspace Iteration

The subspace iteration technique employs vector transformation into

smaller q (n _ q _ m) eigen spaces, that is

46



The transformation matrix [x] is obtained through the successive inverse

iteration process,

[K] [X]k+ 1 = [m] [x] k

where k is the iteration number. After transformation, the large eigenvalue

problem is reduced to the small eigenvalue system containing the q eigenpairs

and is easily solved by the well-known Jacobi rotation technique, that is

[;] = [&] [;]

where

[_1 = [_]T [K] [x]

[&] = [_]T [m] [_]

[x] = q x q diagonal eigenvalue matrix

Iv] = q x q eigenvector matrix corresponding [A]

Even though these methodologies have been widely used, the solution accu-

racy as well as economy rely heavily on the actual numerical implementation.

The following numerical considerations are being kept in mind during program

development.

I •

.

Scale-Factors

a. The mass value is, in general, much smaller than the stiffness

value. A reasonable scale factor (106 for instance) should be

imposed on the mass matrix in order to minimize numerical

truncation errors.

b. The determinant of the matrix [K - M] is, in general, very

large. Care will he taken to avoid numerical overflow.

Numerical Precision

Depending on the computer hardware, double precision or even quad-

ruple precision may be necessary.
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3. Starting Trial Eigenvector

The starting trial eigenvector significantly affects the iteration

convergence rate. Most important is that the wrong trial eigenvec-

tot may lead to the wrong solution in the determinant search tech-

nique. In the subspace iteration technique, improper trial eigen-

vectors may skip some eigenpairs.

4. ConverRence Criteria Limits

a.

h.

c.

d.

Maximum number of iterations

Rayleigh-Quotient iteration tolerance

Eigenvector iteration tolerance

Solution convergence error tolerance

. The eigenshift for determinant search Rayleigh-quotient iteration

technique may converge to the wrong result if the proper eigenshift

is not determined. In order to determine the proper eigenshift for

the next eigenvalue, techniques should be investigated in order to

minimize the number of large matrix decompositions.

. Efficient decomposition and back substitution matrix decomposition

and back substitution play the most important role in the cost of

performing eigenvalue analysis.
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Heat Transfer Development

Linear steady-state Equation:

at time step: t + At:

/e /s _s ht+Ate s ds
D_ t+At

k e" dr +
C

t+At
Qe +/sc _s h t+Ateeds

X

r qs

where 8 "t =

K -"

"88 88 Be]8x 8y 8z

"Kx 1

0 0

0 Ky 0

0 0 K z

convection coefficient

surface of the body
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governing equation: Linear heat transfer

e
(KK + KC)Qt+At = Qt+At + Qt+At CA)

where KK - the conductivity matrix

m fV BmtKK = _=1 m • I_ Bm dVm (I)

K c - the convection matrix

m/.Kc= sc
h(m). Hs(m)T Hs(m). ds (m)

(II)

the nodal point heat flow input vector Q(t+At)

Qt+At = QB(t+At) + Qs(t+At) + Q (t+At)C

= _ fl H (m)T b(m) dVm

where QBt+At m jvm " 9t+At

(B)

(III)

fs S(m)
Q (t+At) = m_ (m) HS(m)T qt+At " ds(m)

S 2

(IV)

where Qc(t+_t) - a vector of concentrated nodal point heat flow input

_J
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e

The nodal point heat flow contribution Qt+At is due to the convection

boundary condition

b
£ - the rate of heat generated in element

S

q - the surface heat flow input

At that time:

e(e) = H(e)
t+At " 8t+At

es(e) = Hs(e)
t+At 8t+&t

o(e) = B(e)
t+At " et+_t

(la)

(Ib)

(lc)

where (e) _ denotes element m

®t+At---_ a vector of all nodal point temperatures at t+At

82t+A t 83t+& t em t+At ]

The matrix H(e)--_ Element Temperature

B(e)_ Temperature gradient interpolation matrice

Hs(e)---_ The surface temperature interpolation matrix
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[B]--_derlvative of the shape function with respect to r, s, t and pre-

multiplication by J -1

e = I ; h ° Hs(m)T ° Hs(m) O (t÷_t) - dS (m)

Qt+At m jsc(m) " e

e
e t+At The given nodal point environmental temperatures.

(v)

e

from this equation to find the Qt+At (i.e. 0e t+At and h are given)

Shape Function:

H1 = gl - (g9 + g12 + g17)/2

v

Y

3

4 I0_

5

2

18

6

H2 = g2 " (g9 + g10 + 818)/2

H3 = g3 " (gl0 + gll + g19)/2

H4 = g4 - (gll + g12 + g20)/2

H5 = g5 - (g13 + g16 + g17)/2
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H6 = g6 - (g13 + 814 + g18)/2

H7 = g7 - (g14 + g15 + g19)/2

H8 = g8 - (g15 I+ g16 + g20)/2

H. = gi for ( i = 9 .... 20)1

gi = 0 if node i is not includes; otherwise:

gi = G(r, ri) G(s, si) GCt, ti)

G(_, _i ) = 1/2 (l+_i_) for _i = ± 1

G(_,_i) = (1-_ 2) for _i = 0

Jacobi's operator [J] is

The displacement functions:

X= 2H.x.

Y = X HiY i

Z=XH.z.
1 ].

4

T

v
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_t at at

w X

wher_:r_ s_ _ at_ the lbcar coordinates.

[B]:
-_ _Hi

8r ar

aH.
•a_ - 1

8s 8s

at at

H_- the rate of heat generated per unit volume

0 - the environmental temperature
e

s
q: - the heat fiow input to the surface of the body

- the convecti6fl coefficient

"_ .¢
q- =-h(O e - 0 s)

e - is the temperature of the body
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o(m) = H(m)
t+At Ot+At

os(m) Hs(m)o
= t+At

e-Cm) B (m)
= " _t+_t

Ot+At - a vector of all nodal point

temperatures at t+_t

T
et+At = [elt+At e2 em] t+At

a)" from Equations (I), (II) we can find the

(Kk & K c)

(b): From Equation (B) the nodal point heat flow input

qt+At = QB(t+At) + qS(t+At) + qc(t+At)

where

/_qn b(m) dV(m)
QB(t+At) = _ H(m)T _(t+At)

S Hs(m)T s(m) dS(m)Qs(t+At) = _ 2 " _(t+At)

Qc(t+At) - a vector of concentrated nodal point heat flow input

It can be solved for Q(t+&t)

(c): From Equation (V) the given nodal point environment temperatures

8
e(t+At)
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h _" Hs(m)T_ Hs(m) " _e (t+_t)
e

dS (m)

ca_ solve for Q_t+At)
(nodal pointheat distribution)

From _tems (a), (b), (c), substitute into Equation A.

(gk +!Kc) 9(t+At ) = Q(t+At) ÷ q_t+At)

The nodal point temperatures in each element can be found by using

equations (la), (Ib), (Ic).

ORIGINAL PAGE IS
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A. Linear Steady-State:

• l,

Read Elem.

Connectivity

Material Prop.

Node Coordinates

Read Conductivity

Kx, Kyp Kz

Nodal Temperature 0.
1

Heat Flux at Surface

s
q

b
Heat Generated Rate q

Convection Coefficient h

I iiiii _IDO I=i, NELM.

Transformation

of Conductivity

from Orthotropic

Axis to Local x, y, z

[K] = [A] T [km] [A]

Formed Conductivity

Matrix

[K] = BT - [K] • B

nxn
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No@
B.C.

i

Formed

[Kc] =/_ h - Hst • Ms • ds

[Kc] =EE w w
nxn i j

(area) • h • H st • Hs

, ,,i

Formed

[Qe] h " Hst " (H s " 8e)dS

[qe] = rE w w
nx 1 i j

(area) • H st - Ms • 8
e

Formed

[QB ]=/v Ht " qb • dv

[QB ]

nx I

= ZZZ w • 5 • Wk • det [J] - H t • qb

Formed

[Qs ]= /s Hst "
S

q • ds

[Qs]
nx 1

=_ W. W. area • H st " qs
1 3
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T

..

Assemble the Matrix

into Structural Matrices

[ _k ] = E [K k]

[_c]=x [Kc]

E_ .1= EEQ]
e e

[_]=xD ]
B B

[_s] --_ [%] -
ml

[iq o = [Q] I

Solve the Equation

o = [K] -1 [Q]

Use COLSOV Subroutine
.m,..

l llf

Temp. Output

60



3D Magnetic-Field Problems - The general governing equations are:

V._=0

(1)

(2)

(3)

-> -->

where H, B, and _ are vector quantities (with three space components);

->

H = the magnetic-field strength,

->

B = the magnetic-flux density,

and J = the magnetic-current density;

(_nly _ is a prescribed quantity; H and
B represent six unknown variables.)

and

p = the magnetic permeability;

v=[_x1+_a+ _ .

Define B = V x _, where _ is a vector potential; then:

°'o

_)V • B = V • (V x = 0

v× _ = v × __= v× iv× I = 3
P P

! -> (4)•". V x V x A = J
P

This equation is equivalent to a stationarity of a variational functional II,

defined as

II = ½ _v _TV x 1 V x _ dv - fv _T3 dv
P

(s)
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n

where _ = i_] Niai

N. = shape function of x, y, z
l

N. = N. (x, y, z)
i I

a. = the nodal value at Node i
1

a. = a. (t)
l i

where v is all space.

Define H = H + H
S m

where

and

H = the magnetic source field,
S

_ = the induced magentizations.
m

The _ is any vector defined such that
S

V x _ = _ (6)
s

then Equation 1 becomes:

->

V × H = 0 (7)
m

This can be identically satisfied by introducing a scalar potential _ defined

by:

-9.

H = -V_
m

.-9,

Eliminating B from Equations 2 and 3:

(g)

V • _ = V p_ = V IJ(_ s m )
• • +H = 0

-V • pV_ + V • _s = 0 (9)
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For a simple scalar unknown

_= XN.a.
I i

I _= _ (x, y, z, t)

where N. = N. (x, y, z)
l l

a. = a. (t)
1 i

Equation 9 may be written

V • pV¢ = _ (Px _(Py ay ) _(Pz

and, with the known quantity, written as:

f = V • p • Hs

For steady-state (time-dependent) problems, Equations I0 and 11 may be

rewritten:

(10)

(11)

_x)+ _ _ + _( (12)

S 1 + S 2 = F

Y

Boundary Conditions - Equation 12 is general and must be solved subject

to additional constraints on the boundary surface. On $1, if nonlinear

= _ (x, y, z, t),
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¢ = ¢ (x, y, z) (13)

while the remaining part of the boundary has the following condition on S2

_x 88_xnx + _y _.n_yy + _z _z nz + g (x, y, Z) = 0 (14)

where n , n , and n are the direction cosines of the outward normal of the

x _ z SI and S 2 forms the complete boundary r, (Si + $2 = F).surface, and the union

Equation 13 is called Dirichlet condition, and Equation 14 is called Cauchy

boundary condition; if g = O, it is called Neumann boundary condition. A

field problem is said to have mixed boundary conditions when some portions of

F have Dirichlet while others have Cauchy.

In Equation 12, if _x =
called Poisson's equation. Ify

equation.

= Pz =
f = 0,

constant = p, ?z# = f(x, y, z)/_ is

then re# = 0 is known as the Laplace

Variational Principal - The function #(x, y, z) that satisfies Equations

12, 13, and 14 also minimizes the functional:

6I(@) = 0

+ 2f¢] dxdydz + fs2(g¢) dS2
(15)

(16)

Element Equations - Suppose that the solution domain v is divided into

H elements of y nodes each. In each element, the unknown function may be

expressed by

Y (e)
q(e)= i_l Ni@i = [N]{O} (17)

where #i is the nodal value of 0 at Node i. Equation 17 implies that only
nodal values of # are taken as nodal degrees of freedom, but derivatives of

may also be used as nodal parameters.

n (e)

I(¢) = Z I(¢ )

e=l

8I(_ (e))1 = O,

80 i
i = I, 2, .... y
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For a Node i on boundary $2, from Equation 15 we have on Surface $2 (e)"

#,B__(e)) B__(e) 8 8_ (e)) + ___(e) 8 (___(e)
v_(e)[Px 85_x(e) __ + py (_y _z _i 8z

)
a¢i "ax ay _i az

f B__(e) B__(e)

+ ] dr(e) + _(e) (g 8,i ) dS2a¢i
(18)

If Node i does not lie on S2, the second integral does not appear.

to Equation 17, these terms typically become:

Y 8N i
{ _x (e)= Z _ $i = [8N/Sxl{$}(e)

i=I

Referring

a rB___(e) aNi
"8x ) = aW-

Thus on Surface S_ e) (Equation 14) we have:

aI(_ (e)) =

a¢ i

aN. aN i aN.

v_(e)[_x[aN/ax]{$}_-_ + _y[SN/ay]{$}B-_-- + pz[aN/Sz]{$}-_-? + fN i] dv (e)

+ _2(e ) ['Ni] dS2(e)

Let $ =_ Ni$i, then
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8N i
_= z EE- ¢i

8N.
= Z i

ay _ _i

8N.

= Z _-i--$i

(19)

8y = [B(x,y, z)]¢i

where

[B(x, y, z)]=

8x 8x 8x

8N

8y 8y 8y

8N

8z 8z 8z

From Equation 19, this may be rewritten

where

Iv [s]T[kt][B]{¢} dv + Iv[fNi] dv + IS2[SN i] dS2 = 0

¢i

2

{¢}=

CY •

(nodal value)

(20)
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Px 0 1

[k t ] = Py

0 Pz

[kt] = magnetic permeability on the principal axis (Px' Py' and pz ).

2.2.3 Task IIC - Graded Composite Materials

An investigation into the merits of various numerical integration schemes

has been pursued in order to determine which schemes might be best suited to
the calculation of stiffness matrices for elements composed of several layers

of different composite materials. All of the schemes investigated to this

point integrate by summing weighted properties evaluated at sampling points

which are spaced throughout the element volume. The differences between the

various schemes is in the weights associated with the sampling points and the

distribution of the sampling points.

The modularization of the stiffness routines allows fairly easy implemen-

tation of the various integration schemes. At present, the Gauss integration

schemes and Newton-Cotes integration schemes have been coded. In addition, a

selective Gauss integration scheme has been coded which uses different Gauss

integration orders for calculation of normal stress/strain terms than the

order used for shear stress/strain terms. Element stiffness matrices have

been obtained using these methods, and a consistent, accurate method for com-

paring them is being worked on.

The previously coded stiffness routines for the 8-, 16-, and 20-noded

isoparametric brick elements have been included in an existing finite-element

code, and an extended checkout has begun. Elastic test case runs of isotropic

materials have begun with comparisons to an existing finite-element code as

well as the critical results.

The test cases run to this point are from "A Proposed Standard Set of

Problems to Test Finite Element Accuracy," by R.H, HacNeal and R.L. Harder, a

paper presented at the 25th SDM Finite Element Validation Forum, May 14, 1984,

and are patch tests and cantilevered-element assemblages for eight-noded-brick

elements (Figures 11 - 13), Tables 4 and 5 summarize the results of some of

the test cases, and the theoretical results are presented in Table 6. It

should be noted that all of these cases were run using single precision.

Further improvement in the calculated answers is expected if double precision

is used, and this will be investigated in the future.

The 8-noded-brick results show that in the bending test cases the use of

incompatible modes produces a considerably better solution as measured by tip

displacement of the cantilevered beam model. However, the straightforward

inclusion of incompatible modes causes the element to fail the patch test, as

can be seen in the result for the existing code. An attempt to rectify this

problem was made in the CSTEM code and is reflected in the results. Here,
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Outer DSmenstcms: klmtt Cube

[ • 1.0 st 106; v o .ZS

X

Locitlm of lamer taxies:

1 .Z49 .342 .192
Z .826 .Z88 .Z88
3 .8SO .M9 .Z63
4 .Z?3 .?SO .nO
5 .320 .IU .$43
6 .677 .305 .U3
7 .?M .H3 .644
8 .165 .;45 .702

Iqoundar_ Cemdttton$: . • 10 .3 (Zx ,_ Jr ÷ Z)/2

v • 10.3 (x-_• z)/2

• - 10 .3 (x 4. Jr • 2z)/Z

Figure ii. Patch Test for Solids.
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I I 1 ! 1 I
a) R_ular Shape _s

c) Parallelogram Shape (1merits

Length • (.0; Vtdth • 0._ Depth - 0.1

E - 1.0 x 107; v - 0.3); Ilesh • 6 x 1

Loadtng: Untt forces at free end

Note: All elment.s have e4ual volume

Figure 12. Straight Cantilever Beam.
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Figure 13. Curved Beam.
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Table 4, Existing FEMCode.

Eight-Noded Bricks

Patch Test

Without With

Incompatibles Compatibles

0% 15o%

% Error in Stress

Cantilevered Beam

Rectangular

Elements

Extension

In Plane

Out of Plane

Twist

Trapezc,id
Elements

Extension

In Plane

Out of Plane

Twist

Parallelogram

Elements

Extension

In Plane

Out of Plane

Twist

Without With

Incompatibles Compatibles

0.9856 (1.4%) 0.9875 (1.2%)

0.0928 (90.7%) 0.9922 (0.8%)

0.0252 (97.5%) 1.070 (7.0%)

0.8383 (16.2%) 0.7830 (21.7%)

0.9845 (1.5%) 1.007 (0.7%)

0.0040 (96.0%) 0.1855 (81.4%)

0.0067 (99.3%) 0.0286 (97.1%)

0.6075 (39.2%) 0.6507 (34.9_)

0.9846 (1.5%) 1.011 (1.1%)

0.0543 (94.6%) 0.7284 (27.2%)

0.0084 (99.2%) 0.6367 (36.3%)

0.4541 (54.6%) 0.7584 (24.2%)

Curved Beam

In Plane

Out of Plane

0.0732 (92.7%) 0.9498 (5.0%)

0.2249 (77.5%) 0.7874 (21.3%)

Normalized Tip Displacement (% Error)
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Table 5. CSTEM Stiffness Code.

Eight-Noded Bricks

Patch test

Without With

Incompatibles Compatibles

0% 0%

% Error in Stress

Cantilevered_Beam

Rectangular

Elements

Extension

In Plane

Out of Plane

Twist

Trapezoid

Elements

Extension

In Plane

Out of Plane

Twist

Parallelogram

Elements

Extension

In Plane

Out of Plane

Twist

Without With

Incompatibles Compatibles

0.9856 (1.4%) 0.9875 (1.2%)
0.0928 (90.7%) 0.9922 (1.8%)
0.0252 (97.5%) 0.9081 (9.2%)
0.8394 (16.1%) 0.8186 (18.1%)

0.9845 (1.5%) 1.007 (0.7%)

0.0040 (96.0%) 0.1851 (81.5%)

0.0067 (99.3%) 0.0285 (97.1%)

0.6078 (39.2%) 0.6502 (35.0%)

0.9846 (1.5%) 1.009 (0.9%)

0.0543 (94.6%) 0.7343 (26.6%)

0.0084 (99.2%) 0.5960 (40.4%)

0.4543 (54.6%) 0.8008 (19.9%)

Curved Beam

In Plane

Out of Plane

0.0733 (92.6%) 0.9520 (4.8%)

0.2265 (77.4%) 0.8771 (12.3%)

Normalized Tip Displacement (% Error)
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Table 6. Theoretical Solutions.

Patch Test

_x = ey + _z = yxy = _0/z = yzx = 10 -3

ox = oy = gz = 2000 psi, Ixy = lyz = Izx = 400 psi

Straight Beam

Extension

In Plane

Out of Plane

Twist

(Tip Displacement in Direction of Load)

3.0 x I0-5 in.

0. 1081 in.

0. 4321 in.

0.00341 in.

Curved Beam (Tip Displacement in Direction of Load)

In Plane 0.08734 in.

Out of Plane 0.5022 in.
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the incompatible modesare included in the stiffness matrix and thus in the

solution of the system of equations. This improves displacements; however,

the recovery of stress from the displacement solution doesn't include

incompatible modes, so the patch test is satisfactory. Along with other

possibilities, this technique is still being investigated.

Another observation that can be made is the reinforcement of the fact

that modeling technique can greatly influence the results. This is evident

from the use of trapezoid- and parallelogram-shaped elements to solve the

same cantilever beam problem. A trapezoid-shaped element in particular
should be avoided in view of the bad results.

The 20-noded brick passes the patch test with no problem regardless of

integration order or whether single or double precision is used. The 20-noded

brick is a quadratic displacement element by nature, and so there are no

incompatible modes associated with it. The problem with the patch test as

exhibited in the 8-noded brick is then avoided by the 20-noded brick.

The regular beam was used for the remainder of the investigation.

Because of the single layer of elements, reduced integration produces poor

results when looking at displacements. This is due to the presence of zero

energy modes: spurious nodal displacements which still satisfy the elemental

equations at the Gauss points. More than one layer of elements would help to

eliminate this phenomena due to the continuity of the element boundaries.

It was found that the use of single or double precision would greatly

affect the results as can be seen in the tabulated results, Table 7. This

points to a numerical sensitivity to rounding off or truncation. Using the

CSTEM code, attempts were made to improve the results by performing certain

operations in double precision while the majority of operations remained in

single precision. It was finally found that the best improvement was obtained

by calculating the shape functions using double precision while all other

operations remained single precision.

2.2.4 Task liD - I/0 and Solution Techniques

To achieve computational efficiency and to avoid repeated codings, a

modular equation solver has been written to perform combinations of the fol-

lowing functions:

Matrix decomposition (matrix triangularization)

Force vector reduction and back-substitution

Matrix decomposition and force vector back-substitution

Partial matrix static condensation

Matrix determinant and Sturm sequence count.

Investigations of the eigenvalue/eigenvector large deformation structural

problem were conducted. Two popular techniques were studied: determinant

search and subspace iteration.
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Determinant Search - This technique employs inverse iteration in conjunc-

tion with eigenshift and Rayleigh quotient method. This method relies heavily

on the equations solver to compute Sturm sequence checks and matrix determi-
nants. The starting trial eigenvector plays a very important role in converg-

ing to the appropriate corresponding eigenpair. Orthogonality criteria must

be imposed for computing repeated, or cluster, eigenpairs.

Subspace Iteration - This method employs inverse iteration, subspace

transformation, and Jacoby successive rotation. Besides the efficient equa-

tions solver, this method relies heavily on the stiff/mass ratio and conver-

gence criteria. This method will generally compute the desired eigenpairs,

but it may not guarantee the lowest eigenpairs.

Constraint equations play a very important role in solving boundary value

problems. Two techniques have been developed for solving FEM structural prob-
lems with constraints. The first technique is the so-called "penalty func-

tion" method which treats the constraint equation as a stiff finite element

and is very easy to incorporate in the program, such as:

To construct a fairly stiff symmetric stiffness matrix out of the

given linear constraint equation

To assemble the constraint stiffness matrix into the global overall

structural stiffness matrix.

The technique generally yields satisfactory solutions as long as the

number of constraints is not large.

The second technique is the classical matrix partitioning method. For

computational efficiency, Gauss elimination is used to perform static con-

densation rather than using matrix inversion to effect matrix partitioning

and reduction. This method is mathematically exact and should be employed

when the number of constraints becomes large. However, implementation of

this technique into the program may be complicated due to the variation of

structural modelings.

For those stress computations within the finite element, Lagrange inter-

polation demonstrated very good results when data are interpolated or extrapo-

lated from the known Gaussian quadrature quantities.

In order to extend the program capability from static analysis to eigen-

value/eigenvector dynamic analysis, the assembly of consistent mass matrices

is required. Because of the similarity between element stiffness matrix and

element consistent mass matrix_ the assembly routines were extended to accom-

modate either.

A new data :file structure has also been added to the CSTEM stiffness

routines. The investigation into different integration techniques emphasized

the need to base storage of certain data on the integration point, rather than

the element as previously done. This is due to the fact that the number of

integration points may vary from element to element, depending on the inte-

gration scheme used. The new data-file structure was incorporated into the
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code used for the preceding investigations, so installation can be considered

complete.

2.2.5 Task liE - Stand-Alone Codes

These capabilities are being generated as stand-alone codes while the

development continues. The major effort in this area is the development of

the file structure and data flow for this complex, interconnected problem. A

change in the file structure is under consideration as a result of the larger

number of integration points being considered. The present element-based

file structure will not adequately handle this problem.
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APPENDIX B - EIGENVALUE SOLUTIONS

Closed-form eigenvalue solutions of cantilever continuous beam with

rectangular cross section

/
/
/

/

i

where

E

I

= Young's modulus

= Area moment of inertia = wt3/12

= Mass per unit length = pwt

p = Mass density

_. = Constants = 1.875, 4.694, 7.855, ...
i

2.

Finite Element Models and Results

Four MSS8 shell elements of equal length were used.

Material data:

E = 30 x 106 psi

ib-sec 2

0 = 0.298/386 4
in
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3. Constant cantilever dimensions:

4_

L=8 in.

W=2 in.

Results :

Test Case Thickness

t = 2 in.

Theoretical

k I = 39

k2 = 1535

MSS8

A 1 = 38.9

k 2 = 1014

t= 1 in.
A 1 = 9.77

A2 = 384

A 1

X2

= 10.3

= 347

t=0.2 in.

A 1 = 0.39

A 2 = 15.4

A3 = 120

A I

A2

k3

= 0.42

= 15.7

= I18
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APPENDIX C - EIGENSHIFT AND RAYLEIGH QUOTIENT EXAMPLE

/

/
/
/
/
/

L=8 in.

------_ X

t
t=2 in.

Y

E = 30 x l0 s psi, v = 0.3, p = 0.298 x l0 s lb/in 3

i

Mode

Shape

(Axis-About)

Ist Bend E

Ist Bendy

Ist Tors X

2nd Bend Z

2nd Bendy

Ist Axial X

3rd Bend E

3rd Bendy

Eigen Values

Eigenvalue Shift and

Subspace Iterations Rayleigh Quotient

0.357145302

0.362975676

6.24068457

9.53697761

0.3+0

0.4- 0

6.0+0

8.0+0

I0.0 - 0

16.0 - 0

44+0

49+049.4069934

.057320891

.037155197

.24067101

.79694164

.46902631

.98479339

.82830848

.40698682
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